229 research outputs found

    Epigenetic profiling of ADHD symptoms trajectories: a prospective, methylome-wide study

    Get PDF
    Attention-deficit/hyperactivity disorder (ADHD) is a prevalent developmental disorder, associated with a range of long-term impairments. Variation in DNA methylation, an epigenetic mechanism, is implicated in both neurobiological functioning and psychiatric health. However, the potential role of DNA methylation in ADHD symptoms is currently unclear. In this study, we examined data from the Avon Longitudinal Study of Parents and Children (ALSPAC)-specifically the subsample forming the Accessible Resource for Integrated Epigenomics Studies (ARIES)-that includes (1) peripheral measures of DNA methylation (Illumina 450k) at birth (n=817, 49% male) and age 7 (n=892, 50% male) and (2) trajectories of ADHD symptoms (7-15 years). We first employed a genome-wide analysis to test whether DNA methylation at birth associates with later ADHD trajectories; and then followed up at age 7 to investigate the stability of associations across early childhood. We found that DNA methylation at birth differentiated ADHD trajectories across multiple genomic locations, including probes annotated to SKI (involved in neural tube development), ZNF544 (previously implicated in ADHD), ST3GAL3 (linked to intellectual disability) and PEX2 (related to perixosomal processes). None of these probes maintained an association with ADHD trajectories at age 7. Findings lend novel insights into the epigenetic landscape of ADHD symptoms, highlighting the potential importance of DNA methylation variation in genes related to neurodevelopmental and peroxisomal processes that play a key role in the maturation and stability of cortical circuits

    Triangulating molecular evidence to prioritize candidate causal genes at established atopic dermatitis loci

    Get PDF
    Genome-wide association studies for atopic dermatitis (AD) have identified 25 reproducible loci. We attempt to prioritize candidate causal genes at these loci using extensive molecular resources compiled into a bioinformatics pipeline. We identified a list of 103 molecular resources for AD aetiology, including expression, protein and DNA methylation QTL datasets in skin or immune-relevant tissues which were tested for overlap with GWAS signals. This was combined with functional annotation using regulatory variant prediction, and features such as promoter-enhancer interactions, expression studies and variant fine-mapping. For each gene at each locus, we condensed the evidence into a prioritization score. Across the investigated loci, we detected significant enrichment of genes with adaptive immune regulatory function and epidermal barrier formation among the top prioritized genes. At 8 loci, we were able to prioritize a single candidate gene (IL6R, ADO, PRR5L, IL7R, ETS1, INPP5D, MDM1, TRAF3). In addition, at 6 of the 25 loci, our analysis prioritizes less familiar candidates (SLC22A5, IL2RA, MDM1, DEXI, ADO, STMN3). Our analysis provides support for previously implicated genes at several AD GWAS loci, as well as evidence for plausible additional candidates at others, which may represent potential targets for drug discovery

    Psychosocial adversity and socioeconomic position during childhood and epigenetic age: analysis of two prospective cohort studies

    Get PDF
    Psychosocial adversity in childhood (e.g. abuse) and low socioeconomic position (SEP) can have significant lasting effects on social and health outcomes. DNA methylation-based biomarkers are highly correlated with chronological age; departures of methylation-predicted age from chronological age can be used to define a measure of age acceleration, which may represent a potential biological mechanism linking environmental exposures to later health outcomes. Using data from two cohorts of women Avon Longitudinal Study of Parents and Children, (ALSPAC), N = 989 and MRC National Survey of Health and Development, NSHD, N = 773), we assessed associations of SEP, psychosocial adversity in childhood (parental physical or mental illness or death, parental separation, parental absence, sub-optimal maternal bonding, sexual, emotional and physical abuse and neglect) and a cumulative score of these psychosocial adversity measures, with DNA methylation age acceleration in adulthood (measured in peripheral blood at mean chronological ages 29 and 47 in ALSPAC and buccal cells at age 53 in NSHD). Sexual abuse was strongly associated with age acceleration in ALSPAC (sexual abuse data were not available in NSHD), e.g. at the 47-year time point sexual abuse associated with a 3.41 years higher DNA methylation age (95% CI 1.53 to 5.29) after adjusting for childhood and adulthood SEP. No associations were observed between low SEP, any other psychosocial adversity measure or the cumulative psychosocial adversity score and age acceleration. DNA methylation age acceleration is associated with sexual abuse, suggesting a potential mechanism linking sexual abuse with adverse outcomes. Replication studies with larger sample sizes are warranted

    MalHaploFreq: A computer programme for estimating malaria haplotype frequencies from blood samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular markers, particularly those associated with drug resistance, are important surveillance tools that can inform policy choice. People infected with <it>falciparum </it>malaria often contain several genetically-distinct clones of the parasite; genotyping the patients' blood reveals whether or not the marker is present (i.e. its prevalence), but does not reveal its frequency. For example a person with four malaria clones may contain both mutant and wildtype forms of a marker but it is not possible to distinguish the relative frequencies of the mutant and wildtypes i.e. 1:3, 2:2 or 3:1.</p> <p>Methods</p> <p>An appropriate method for obtaining frequencies from prevalence data is by Maximum Likelihood analysis. A computer programme has been developed that allows the frequency of markers, and haplotypes defined by up to three codons, to be estimated from blood phenotype data.</p> <p>Results</p> <p>The programme has been fully documented [see Additional File <supplr sid="S1">1</supplr>] and provided with a user-friendly interface suitable for large scale analyses. It returns accurate frequencies and 95% confidence intervals from simulated dataset sets and has been extensively tested on field data sets.</p> <suppl id="S1"> <title> <p>Additional File 1</p> </title> <text> <p>User manual for MalHaploFreq.</p> </text> <file name="1475-2875-7-130-S1.pdf"> <p>Click here for file</p> </file> </suppl> <p>Conclusion</p> <p>The programme is included [see Additional File <supplr sid="S2">2</supplr>] and/or may be freely downloaded from <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>. It can then be used to extract molecular marker and haplotype frequencies from their prevalence in human blood samples. This should enhance the use of frequency data to inform antimalarial drug policy choice.</p> <suppl id="S2"> <title> <p>Additional File 2</p> </title> <text> <p>executable programme compiled for use on DOS or windows</p> </text> <file name="1475-2875-7-130-S2.exe"> <p>Click here for file</p> </file> </suppl

    Circulating Fatty Acids and Risk of Coronary Heart Disease and Stroke: Individual Participant Data Meta-Analysis in Up to 16 126 Participants

    Get PDF
    BACKGROUND We aimed at investigating the association of circulating fatty acids with coronary heart disease (CHD) and stroke risk. METHODS AND RESULTS We conducted an individual‐participant data meta‐analysis of 5 UK‐based cohorts and 1 matched case‐control study. Fatty acids (ie, omega‐3 docosahexaenoic acid, omega‐6 linoleic acid, monounsaturated and saturated fatty acids) were measured at baseline using an automated high‐throughput serum nuclear magnetic resonance metabolomics platform. Data from 3022 incident CHD cases (13 104 controls) and 1606 incident stroke cases (13 369 controls) were included. Logistic regression was used to model the relation between fatty acids and odds of CHD and stroke, adjusting for demographic and lifestyle variables only (ie, minimally adjusted model) or with further adjustment for other fatty acids (ie, fully adjusted model). Although circulating docosahexaenoic acid, but not linoleic acid, was related to lower CHD risk in the fully adjusted model (odds ratio, 0.85; 95% CI, 0.76–0.95 per standard unit of docosahexaenoic acid), there was evidence of high between‐study heterogeneity and effect modification by study design. Stroke risk was consistently lower with increasing circulating linoleic acid (odds ratio for fully adjusted model, 0.82; 95% CI, 0.75–0.90). Circulating monounsaturated fatty acids were associated with higher CHD risk across all models and with stroke risk in the fully adjusted model (odds ratio, 1.22; 95% CI, 1.03–1.44). Saturated fatty acids were not related to increased CHD risk in the fully adjusted model (odds ratio, 0.94; 95% CI, 0.82–1.09), or stroke risk. CONCLUSIONS We found consistent evidence that linoleic acid was associated with decreased risk of stroke and that monounsaturated fatty acids were associated with increased risk of CHD. The different pattern between CHD and stroke in terms of fatty acids risk profile suggests future studies should be cautious about using composite events. Different study designs are needed to assess which, if any, of the associations observed is causal

    Cubic exact solutions for the estimation of pairwise haplotype frequencies: implications for linkage disequilibrium analyses and a web tool 'CubeX'

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The frequency of a haplotype comprising one allele at each of two loci can be expressed as a cubic equation (the 'Hill equation'), the solution of which gives that frequency. Most haplotype and linkage disequilibrium analysis programs use iteration-based algorithms which substitute an estimate of haplotype frequency into the equation, producing a new estimate which is repeatedly fed back into the equation until the values converge to a maximum likelihood estimate (expectation-maximisation).</p> <p>Results</p> <p>We present a program, "CubeX", which calculates the biologically possible exact solution(s) and provides estimated haplotype frequencies, D', r<sup>2 </sup>and <it>χ</it><sup>2 </sup>values for each. CubeX provides a "complete" analysis of haplotype frequencies and linkage disequilibrium for a pair of biallelic markers under situations where sampling variation and genotyping errors distort sample Hardy-Weinberg equilibrium, potentially causing more than one biologically possible solution. We also present an analysis of simulations and real data using the algebraically exact solution, which indicates that under perfect sample Hardy-Weinberg equilibrium there is only one biologically possible solution, but that under other conditions there may be more.</p> <p>Conclusion</p> <p>Our analyses demonstrate that lower allele frequencies, lower sample numbers, population stratification and a possible |D'| value of 1 are particularly susceptible to distortion of sample Hardy-Weinberg equilibrium, which has significant implications for calculation of linkage disequilibrium in small sample sizes (eg HapMap) and rarer alleles (eg paucimorphisms, q < 0.05) that may have particular disease relevance and require improved approaches for meaningful evaluation.</p

    Validation of lipid-related therapeutic targets for coronary heart disease prevention using human genetics

    Get PDF
    Drug target Mendelian randomization (MR) studies use DNA sequence variants in or near a gene encoding a drug target, that alter the target's expression or function, as a tool to anticipate the effect of drug action on the same target. Here we apply MR to prioritize drug targets for their causal relevance for coronary heart disease (CHD). The targets are further prioritized using independent replication, co-localization, protein expression profiles and data from the British National Formulary and clinicaltrials.gov. Out of the 341 drug targets identified through their association with blood lipids (HDL-C, LDL-C and triglycerides), we robustly prioritize 30 targets that might elicit beneficial effects in the prevention or treatment of CHD, including NPC1L1 and PCSK9, the targets of drugs used in CHD prevention. We discuss how this approach can be generalized to other targets, disease biomarkers and endpoints to help prioritize and validate targets during the drug development process

    Metabolic characterization of a rare genetic variation within APOC3 and its lipoprotein lipase-independent effects

    Get PDF
    Background— Plasma triglyceride levels have been implicated in atherosclerosis and coronary heart disease. Apolipoprotein C-III (APOC3) plays a key role in the hydrolysis of triglyceride-rich lipoproteins to remnant particles by lipoprotein lipase (LPL) and their uptake by the liver. A rare variant in APOC3(rs138326449) has been associated with triglyceride, very low–density lipoprotein, and high-density lipoprotein levels, as well as risk of coronary heart disease. We aimed to characterize the impact of this locus across a broad set of mainly lipids-focused metabolic measures. Methods and Results— A high-throughput serum nuclear magnetic resonance metabolomics platform was used to quantify 225 metabolic measures in 13 285 participants from 2 European population cohorts. We analyzed the effect of the APOC3 variant on the metabolic measures and used the common LPL(rs12678919) polymorphism to test for LPL-independent effects. Eighty-one metabolic measures showed evidence of association with APOC3(rs138326449). In addition to previously reported triglyceride and high-density lipoprotein associations, the variant was also associated with very low–density lipoprotein and high-density lipoprotein composition measures, other cholesterol measures, and fatty acids. Comparison of the APOC3 and LPL associations revealed that APOC3 association results for medium and very large very low–density lipoprotein composition are unlikely to be solely predictable by the action of APOC3 through LPL. Conclusions— We characterized the effects of the rare APOC3(rs138326449) loss of function mutation in lipoprotein metabolism, as well as the effects of LPL(rs12678919). Our results improve our understanding of the role of APOC3 in triglyceride metabolism, its LPL independent action, and the complex and correlated nature of human metabolites.The UK Medical Research Council and the Wellcome Trus

    Causal effects of maternal circulating amino acids on offspring birthweight: a Mendelian randomisation study

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordData sharing statement: Data on birthweight have been contributed by the EGG Consortium using the UK Biobank resource and are available at www.egg-consortium.org. All genome-wide summary statistics for amino acids are available at https://omicscience.org/apps/crossplatform/. The data in BiB are fully available, via a system of managed open access, to any researchers. Full information on how to access BiB data can be found at https://borninbradford.nhs.uk/research/how-to-access-data/.BACKGROUND: Amino acids are key to protein synthesis, energy metabolism, cell signaling and gene expression; however, the contribution of specific maternal amino acids to fetal growth is unclear. METHODS: We explored the effect of maternal circulating amino acids on fetal growth, proxied by birthweight, using two-sample Mendelian randomisation (MR) and summary data from a genome-wide association study (GWAS) of serum amino acids levels (sample 1, n = 86,507) and a maternal GWAS of offspring birthweight in UK Biobank and Early Growth Genetics Consortium, adjusting for fetal genotype effects (sample 2, n = 406,063 with maternal and/or fetal genotype effect estimates). A total of 106 independent single nucleotide polymorphisms robustly associated with 19 amino acids (p < 4.9 × 10-10) were used as genetic instrumental variables (IV). Wald ratio and inverse variance weighted methods were used in MR main analysis. A series of sensitivity analyses were performed to explore IV assumption violations. FINDINGS: Our results provide evidence that maternal circulating glutamine (59 g offspring birthweight increase per standard deviation increase in maternal amino acid level, 95% CI: 7, 110) and serine (27 g, 95% CI: 9, 46) raise, while leucine (-59 g, 95% CI: -106, -11) and phenylalanine (-25 g, 95% CI: -47, -4) lower offspring birthweight. These findings are supported by sensitivity analyses. INTERPRETATION: Our findings strengthen evidence for key roles of maternal circulating amino acids during pregnancy in healthy fetal growth. FUNDING: A full list of funding bodies that contributed to this study can be found under Acknowledgments.National Institutes of Health (NIH)European Union FP7British Heart FoundationNational Institute for Health and Care Research (NIHR)Wellcome TrustMedical Research Council (MRC)Economic and Social Research Council (ESRC
    corecore